

Gábor Imre

MADFAST SIMILARITY SEARCH

Brief history

A similarity based overlap analysis of 5k query structures was needed to be executed against 12M targets - all under 1h.

Explored two approaches:

- Use clustering based heuristic to reduce set sizes.
- Optimize multy query similarity search implementation.

Who won?

Multi core machines are fast and can have huge memory:

- Exhaustive search won
- Original goal was reached with a few minutes execution time

The fundamentals of a faster than expected similarity search engine was born. What could we do with it?

- Overlap analysis of large sets?
- Push the limits of similarity based clustering?
- Real time search?

REAL TIME SEARCH

Demo

Demo

Lets see real time search on a large set:

Search against the Zinc database containing 16M structures

On an Amazon EC2 virtual machine (32vCPU class)

Most similars structures (zinc-all-cfp7: Descriptors from zinc-all-cfp7.bin)

Performance

Similarity search time was ~0.08 sec (80 ms) per query translating to ~5ns per query-target comparison. The most similar targets are shown as you type/draw.

Efficiency of multi query search:

 With >600 query batches >600M comparison/s sustained on a c3.8xlarge instance

 Or 2.2G comparison/s on an x1.32xlarge instance - <8min run time for doing an 1M x 1M exhaustive search

Go larger

Searching against 16M targets is fast. What are the limits?

- Amazon EC2 provides r3.8xlarge instance with 32 vCPU and 244 GB memory
- GDB-13 is the largest publicly available small organic molecules database containing 977M structures. (*Small organic molecules enumerated up to 13 atoms of C, N, O, S and CL following simple chemical stability and synthetic feasibility rules.*)

Further notes

- Nearly 1B structures were the limits for the r3.8xlarge instance type.
- The new x1.32xlarge contains nearly 2TB RAM and 128vCPU, for ~13\$/h
- So even ~8B structures could be handled using a single machine

OTHER USE CASES

Beyond real time similarity search

Similarity based overlap analysis

Notes

Calculation performance includes structure preprocessing and fingerprint generation. Using 1024 bit binary path based fingerpints, small molecules from publicly available sources. Using i7-4790 desktop, EC2 c3.8xlarge and x1.32xlarge instances. Comparison performance is measured for most similar search using multiple (few 100) queries. 2.2G comparison/sec is equivalent with <8 min per million by million exhaustive search.

Library evaluation

FUN, WHAT MORE DO YOU HAVE

Available components

Distribution

- Distribution for early adopters contact us for details
- First public release is on the way
- Command line interfaces for the hardcore users
- REST server for integrators
- ML / Plexus integration
- User interface for focused chemical space analyis

PLANS

Roadmap

- Interactive UI for overlap analysis
- Real time clustering
- Single desktop UI release.
- Public Java API components for developers

THANK YOU

Gábor Imre

